High-efficiency DNA injection into a single human mesenchymal stem cell using a nanoneedle and atomic force microscopy.

نویسندگان

  • Sung-Woong Han
  • Chikashi Nakamura
  • Noriko Kotobuki
  • Ikuo Obataya
  • Hajime Ohgushi
  • Teruyuki Nagamune
  • Jun Miyake
چکیده

We describe a low-invasive gene delivery method that uses an etched atomic force microscopy (AFM) tip or nanoneedle that can be inserted into a cell nucleus without causing cellular damage. The nanoneedle is 200 nm in diameter and 6 mum in length and is operated using an AFM system. The probabilities of insertion of the nanoneedle into human mesenchymal stem cells (MSCs) and human embryonic kidney cells (HEK293) were higher than those of typical microinjection capillaries. A plasmid containing the green fluorescent protein (GFP) gene was adsorbed on a poly-L-lysine-modified nanoneedle surface, which was then inserted into primary cultured single human MSCs. A highly efficient gene delivery of over 70% was achieved in human MSCs, which compared very favorably with other major nonviral gene delivery methods (lipofection approximately 50%, microinjection approximately 10 %). The single cells expressing GFP were collected and the amount of delivered DNA in each cell was analyzed. The highest rate of expressed GFP per delivered DNA was achieved using the nanoneedle, because the nanoneedle could be inserted into the nucleus directly without causing significant cell damage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A molecular delivery system by using AFM and nanoneedle.

We developed a new low invasive cell manipulation and gene or molecule transfer system in a single living cell by using an atomic force microscope (AFM) and ultra thin needle, a nanoneedle. DNA was immobilized on the surface of the nanoneedle by covalent bonding and avidin-biotin affinity binding. Immobilization of DNA on the nanoneedle was confirmed by measuring the unbinding force between avi...

متن کامل

Direct Insertion of Proteins into a Living Cell Using an Atomic Force Microscope with a Nanoneedle

We have developed a tool for directly inserting proteins into living cells by using atomic force microscopy (AFM) and an ultrathin needle, termed a nanoneedle. The surface of the nanoneedle was modified with His-tagged proteins using nickel chelating nitrilotriaceticacid (NTA). The fluorescent proteins, DsRed2-His6 and EGFP-His6, could be attached to and detached from the surface of the nanonee...

متن کامل

Effect of Human Mesenchymal Stem Cell-Conditioned Medium Injection on Oxidative Stress Induced by Carbon Tetrachloride in the Liver Tissue of Rats

Background: Carbon tetrachloride (CCI4) is used as a chemical intermediate in industries. It can be converted into toxic reactive products of trichloromethyl radical under the influence of cytochrome P450 enzymes, and cause tissue damage, including liver damage, through oxidative stress. Liver transplantation is an effective treatment for liver failure but is limited due to the shortage of orga...

متن کامل

Melatonin Pretreatment Enhances the Homing of Bone Marrow-derived Mesenchymal Stem Cells Following Transplantation in a Rat Model of Liver Fibrosis

Background: Bone marrow-derived mesenchymal stem cells (BMMSCs) transplantation has been considered as a promising milestone in liver fibrosis treatment. However, low amounts of homing are a major obstacle. We aimed to investigate the role of melatonin pretreatment in BMMSC homing into experimental liver fibrosis. Methods: BMMSCs were obtained, grown, propagated and preconditioned with 5 &micro...

متن کامل

Conditioned medium derived from mesenchymal Stem cells regenerates’ defected articular cartilage

Background & Aims: One of cell- based technical issues associated with cartilage repair assay is delivering cells to the site of the parts where damage is created. Mesenchymal stem cells (MSCs) with their chondrogenic potential are ideal candidates for cartilage regeneration. High expression of cartilage hypertrophy markers by MSCs would result in apoptosis and ossification. This investigation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanomedicine : nanotechnology, biology, and medicine

دوره 4 3  شماره 

صفحات  -

تاریخ انتشار 2008